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A brief description is given of the cartographic activity of John Dee, which involved the production of at least three 
manuscript maps in the years 1580-1583 in connection with exploration and imperial ambitions.  The form of an 
idealised version of the unusual  projection used in one of the maps dated 1580 is discussed and it is shown how it 
may be considered to be related to projections developed between antiquity and 1551.  The precise form of Dee’s 
projection is investigated and the possible reasons why he adopted it are considered. 
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Introduction 

The scholar John Dee (1527-1608) is often thought of as Elizabethan England’s greatest 
magus, but he has also been described by William Sherman (1998) as the English court’s leading 
imperial geographer. Articles by a  number of other authors have also mentioned his importance 
in this area (e.g. Taylor, 1930; De Smet, 1973; Macmillan, 2003). De Smet says that ‘Il est 
impossible de déterminer exactement l’activité géographique et cartographique’ of Dee, but in 
this capacity he was certainly responsible for the production of several maps (De Smet, 1973, 
p.111).  

There are two extant manuscript maps that are definitely attributable to him, and probably a 
third, but there are no known printed maps. The reason for non-publication may, at least in part, 
be the fact that the known maps were concerned with matters of national importance - the 
possibility of finding northeast or northwest passages or claims to territory. MacMillan (2003) 
has discussed extensively the measures taken at the time by the state to retain the advantages that 
secrecy about recent geographical discoveries provided. One of the extant manuscript maps is of 
the western half of the northern hemisphere and is dated 1580 (British Library, MS Cotton 
Augustus I.i.1).  It is this map that forms the major interest of the present paper and it is shown in 
Figure 1.   

Whether Dee actually drew any of the maps himself is not certain. Ganong (1937) expressed 
the opinion that at least as far as the map of Figure 1 is concerned, it seems unlikely that Dee had 
the skill and technique to compile and draw such a map and suggested that it was probably made 
under his supervision.  Whatever may be the truth of this, it seems very likely that even if 
someone else drew the map, Dee, with his mathematical knowledge and with his contacts with 
Gemma Frisius, Oronce Fine, Mercator, Ortelius and Nuñez (Taylor, 1930, pp 78-88; 
MacMillan, 2001), was responsible for the projection used.1 Before this map and its projection 
are discussed in detail, the other two maps, which are drawn to well-known projections, are 
described very briefly. For details of the origins, purposes and political importance of all the 
maps and for illustrations of those not shown here see, for example, Sherman (1998) and 
references therein. 

Dee maps drawn to well-known projections 
One of these maps, which is signed by Dee, is another map of part of the northern 

hemisphere, also produced in 1580. It is now bound into Lord Burghley’s copy of Ortelius’s 
Theatrum Orbis Terrarum and is in the Burghley House Collection (number BKS16611). The 
map is described by Sherman (1988) as being on a ‘fan-shaped projection’ and it looks at first 
like an equidistant conic projection. In fact it represents 210° of longitude of a polar equidistant 
azimuthal projection, covering latitudes from 40° degrees north to the pole.  Meridians are 
labelled from 10° to 200° and the 20° meridian appears to pass through London, so that the 
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coverage in modern terms is notionally from 30°W to 180°E. The purpose of the map was to 
illustrate a possible northeast passage. 

The second map is of the whole of the northern hemisphere. It was drawn on a polar 
stereographic projection in about 1583.  It is often called  the ‘Humphrey Gilbert map’ because it 
bears in the bottom right corner the inscription ‘Humfray Gilbert Knight his charte’, but it is 
thought to be by Dee (Sherman, 1998, pp 6-8, particularly note 27). Cormack (1997, p.99) 
implies that the projection used was Dee’s invention2.  It is, however, certain that Dee was not 
the inventor of this projection, because it was known to Hipparchus, Ptolemy and probably 
earlier to the Egyptians. The first extant world map on this projection was produced in 1507 by 
Gualterius Lud and it was also used well before Dee’s time by Reisch, Apian and others (Snyder, 
1997, p.22).  It is, however, possible that Dee was unaware of the earlier use and reinvented the 
projection, but this seems unlikely because of his friendship, already mentioned, with 
cartographers such as Mercator and Ortelius. 

The unusual projection 
Dee’s map of 1580 that is the subject of this paper is sometimes said to be ‘of the northern 

hemisphere’ but actually it is a map of the north-western semi-hemisphere, i.e. it attempts to 
depict only one quarter, not one half, of the earth’s surface. The projection in the complete form 
used for this map is not described in any of the standard works on the history of map projections 
(Nordenskiöld, 1889, Keuning, 1955, Snyder 1993) . It may in fact be unique to this map and as 
far as I am aware it has not been commented upon previously by those who have discussed other 
aspects of the map. 

The projection is based on an octant of the sphere centred at 35°16'N and approximately 
80°W.  The equilateral spherical triangle defining the octant is represented by three circular arcs 
of the same radius, one centred at the N pole and representing the equator and the other two 
representing the meridians at plus and minus 45° from the central meridian.  Each of these two 
arcs is centred on the point where the other 45° meridian crosses the equator and they are drawn 
in bolder lines than the other parts of the graticule. The three arcs form a Reuleaux triangle. 

The parallels are equally-spaced concentric circles centred at the pole and in the ideal form of 
the projection the meridians, other than those bounding the central octant, would be drawn so 
that they were equally spaced along the parallels within the central octant. This equal spacing 
would then be continued out beyond the bounding meridians of the octant to reach 90° either 
side of the central meridian, so enabling a full half-hemisphere to be depicted. The meridians so 
defined are not exactly circular except for those bounding the octant and their approximation by 
circular arcs is described later.  A more technical description of the projection in its ideal form is 
as follows: 

Choose axes centred at the N pole, O, with y vertical upwards and x horizontal to the right. 
The polar angle θ is measured clockwise from Oy. If R is the (scaled) radius of the earth, the 
equation for the equally spaced lines of latitude φ, which are circles centred at the N pole, is 

)2/( φπ −= Rr  and the equation for all the lines of longitude is [ ]6//)(cos πθππ +−= fRr , 

where f ranges from -2 at the meridian 90°W of the central meridian to +2 at the meridian 90°E 
of the central meridian.  This parameter takes the values -1 and +1 for the two meridians 
bounding the central octant, which are circular arcs, unlike all the other meridians. The quantity f 
is related to the longitude λ east of the central meridian by πλ /4=f .  In cartesian coordinates, 

θcosry = , θsinrx = .  

The projection is neither equal area nor conformal (orthomorphic).  The scale along the 
central meridian is uniform and the representative fraction is eRR/:1 , where eR  is the radius of 

the earth.  The scale is constant along each parallel. Setting πφ /21−=A  , the scale factor is 
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equal to ( )[ ] φπ cos/3/2/cos2 1 −− AA , which varies from 047.13/ =π for φ = 0 to 4/3 = 1.333 for 

φ = π/2.  The projection is illustrated in Figure 2, with Tissot ellipses shown for a few selected 
points. These ellipses show the distortion on the map of imaginary infinitesimal circles on the 
ground at the centres of the ellipses (Snyder, 1993, pp 147-9 and references therein). 

Relationship to other projections 
The projection may be considered to be related to the series of equal-area pseudo-conic 

projections going back in origin to Ptolemy’s second projection, the so-called homeotheric 
projection, and to the series of true geometric projections, Figure 3. 

Ptolemy’s projection (2nd century AD) was designed to cover only the then-known world, all 
of which lay between latitudes 16°25′S and 63°N (Nordenskiöld, 1889, pp 6 and 86; Keuning 
1955, p.10; Snyder, 1997, pp 12-14; Berggren and Jones, 2000, pp 88-93). It was based on 
equidistant concentric circles for parallels, with all meridians, drawn from -90° to +90° from the 
central meridian, ideally cutting the parallels at their correct proportional distances from the 
central meridian along each parallel.  In practice the meridians were approximated by circular 
arcs passing through the correct points on the extreme and central parallels, so that the projection 
is then not quite equal-area or homeotheric. The common centre of the parallel circles is chosen 
to give the impression that the viewer is looking along the straight line that joins the central point 
of the projection, i.e. the intersection of the central meridian and central parallel, to the centre of 
the earth.  The equatorial diameter of the earth perpendicular to the line of sight would then 
appear to be tangent to the central parallel.  With Ptolemy’s choice for the length of this central 
diameter as equivalent to 180° at the latitude scale of the central meridian and with the central 
parallel at 23°50′N (the latitude of Syene) the centre of the circular arcs of the parallels is 
calculated to be at a distance equivalent to 181°48' of latitude north of the equator3.  

Sylvano’s projection for his ‘world map’, which is of the type later described by the name of 
Bonne, is similar to the homeotheric projection but places the centre of the equally-spaced 
circular arcs of the parallels only about 100° equivalent from the equator. It also extends the 
cover to 160° either side of the central meridian, using correctly spaced non-circular meridians 
(Sylvano, 1511; Nordenskiöld, 1889, plate 33; Snyder 1993, pp 33-4). This projection is 
sometimes called a cordiform projection but was not extended by Sylvano beyond 40°S, so that 
the tendency to a point at the S pole is not seen. 

The true cordiform projections are those of Stabius, of about 1500, further publicised by 
Werner in 1514 (Nordenskiöld, 1889, p.88; Keuning, 1955, pp 11-13  and Figs 10 & 11; Kish, 
1965; Snyder 1993, pp 33-8). The three Stabius/Werner projections all have the N pole as the 
centre of equally spaced circular arcs representing the parallels and the meridians are equally 
spaced along all parallels by amounts correctly proportional to the corresponding equatorial 
spacings.  The differences between the three projections lie in the different ratios of the distances 
representing one equatorial degree to those representing one degree of latitude along the central 
meridian. For projections 1, 2 and 3 these ratios are π/2, 1.0 and π/3, respectively.  This ratio for 
Stabius/ Werner 3 is thus the same as for Dee’s projection, and means that the N pole and the 
points where the meridians at ±45° from the central meridian cross the equator form an 
equilateral triangle in this projection, as they do in Dee’s projection. The first of the three 
projections can be used for a longitude range of about 229°, whereas the other two can be used 
for the whole world. 

The equilateral triangle representation of the N pole and the points on the equator at ±45° 
from the central meridian is also found for the three well-known true perspective projections 
shown in Figure 3, provided that the projection plane is tangent to the earth at the point 35°16'N 
on the central meridian and the axis of projection is normal to the plane. Their projection points 
are, respectively, ‘infinity’, the point at 35°16'S on the meridian opposite to the central meridian, 
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and the centre of the earth.  Only the first two of these can, however, be used to map a full 180° 
of longitude.  Figure 4. shows a comparison of the chief features of Dee’s projection with those 
of Stabius/Werner 3 and the orthographic and stereographic projections drawn at such scales that 
the equilateral triangles at their centres are of equal sizes. 

The remaining two projections shown in Figure 3, the da Vinci octants and the Fine octant are 
based simply on Reuleaux triangles.  Leonardo da Vinci or, as suggested by Keuning (1955), one 
of his pupils, drew a world map (c.1514) consisting of eight octants arranged in two groups of 
four, one group for the northern hemisphere and one for the southern hemisphere with each 
group arranged in a four-leaf clover pattern (Nordenskiöld, 1889, pp 76-7; Keuning, 1955, pp 
22-3; Snyder 1993, p.40).  Figure 5 shows a modern reconstruction of this type of projection by 
Furuti4, although the da Vinci map octants do not have graticules.  The final projection shown in 
Figure 3 is that of Oronce Fine. A graticule for a single Reuleaux triangle was given by Fine in 
his Sphaera Mundi (1551) but not used by him to produce a map.  The projection is described 
and illustrated by Nordenskiöld  (1889, p.94), by Keuning  (1955, p.23 and fig 20) and by 
Snyder (1993, p.40-1). The parallels are circular arcs equally spaced and centred at the pole.  The 
equatorial arc and the arcs representing latitude 45° are each divided equally for degrees of 
longitude and the meridians are drawn as circular arcs passing through the pole and the 
appropriate points on the equator and on the 45° parallel.  Keuning (1955, p.23) records only one 
map drawn using this projection.  Dee’s map is an extension of this type of projection to cover 
180° of longitude. 

Various kinds of octant maps have been revived in the twentieth century but have not 
generally been taken seriously (Snyder, 1993, pp 264-5).  

The form of Dee’s meridians 
In order to examine whether Dee’s graticule was drawn using the ideal form of the meridians 

or the circular form suggested by Fine, a digitised version of the map was obtained by scanning 
Figure 1 of  Sherman’s  paper (1998).  It was considered that the further manipulation and 
attempted flattening of the original map to obtain a direct digital scan would not be justified with 
only this aim in mind, nor was it likely that a much better image would be obtained.  The results 
to be described justify this decision5.  

The intersections of meridians and parallels were calculated at ten degree intervals of latitude 
and longitude for each assumed form of the meridians. The intersections of the ±45° meridians 
with the parallels were also included. There are 190 intersections of parallels and meridians on 
each calculated graticule and it was possible to locate 166 (87%) of these on the scanned Dee 
map.  Examination of the original map showed that three of the intersections would lie outside 
the area covered by it, these being the equatorial points at longitudes ±90°and the point at 
latitude 10°, longitude 90°E of the central meridian.  Five other equatorial points were not 
locatable on the scan, as were a number of points on the meridians at ±70° and ±80°. At least 
three of these 21 points would have been difficult to locate accurately on the original or a direct 
scan of it because they were either too feint or obscured by deterioration of the map. 

The 166 points of the Dee graticule were digitised twice independently in order to see how 
accurately this could be done.  The standard deviation between the two sets of locations obtained 
was equivalent to approximately 0.4 mm measured on the original map.  The average of the two 
sets was used in the comparison with the two calculated graticules, in the following way. 

For each calculated graticule, only those intersections lying on the Reuleaux triangle and the 
central meridian of the Dee graticule were effectively shifted in the horizontal and vertical 
directions, scaled and rotated to obtain a best fit between them and the corresponding points of 
the calculated graticule.  Best fit was defined as that giving the least value of the sum of the 
squares of the remaining differences in positions, i.e. a bi-dimensional regression with five 
parameters was performed.  As expected, the parameters for both fits were found to be almost 
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identical, and the scaling factors in the horizontal and vertical directions were found to differ by 
only 0.04%.  Using the parameters found, the standard deviations were calculated for all the 166 
points of intersection, for the 94 points within and including the Reuleaux triangle and for the 73 
intersections lying outside the Reuleaux triangle (the point at the pole was used in both of the last 
two calculations). 

The standard deviations for the Reuleaux triangle, the 166 points, the 94 points and the 73 
points, respectively, were 1.01, 2.0, 0.96 and 2.8 for the ideal meridians and 1.01, 1.6, 0.95 and 
2.2 for the circular meridians, with all values quoted in effective mm on the original map.  The 
corresponding deviations are shown multiplied by 5 in figure 6.   These results show that it is not 
possible to distinguish between the two forms of the meridians within the Reuleaux triangle but 
suggest that at least outside this region the meridians actually used are more likely to have been 
circular than a good approximation to the ideal meridians.  Figure 6 shows that there are 
systematic deviations from both fits, and these may be due, at least in part, to distortions of the 
parchment of the map since drawing or to difficulties in flattening it.  Despite this, the accuracy 
of drawing is very high in the central region of the map (on or within the Reuleaux triangle), 
where the greatest shift of an intersection from its expected position corresponds to less than 2.5 
mm on the original and the standard deviation, which corresponds to the most probable shift, is 
less than 1 mm.6  The ‘remarkable scientific accuracy [of this map] for the time’ was commented 
on by MacMillan (2003), but without supporting measurements. 

Dee’s choice of projection 
Why did Dee choose such an unusual projection?  The clear focus of the map is North 

America or, as Dee preferred to call it, Atlantis.  The projection has the advantage, shared with 
the true perspective projections, if their plane of projection is correctly chosen, of giving the 
observer the impression that he is looking at this central feature directly from above. Almost the 
whole of the then-known part of North America falls within the Reuleaux triangle, and this is the 
area that was of principal interest to the English state, as is clear from the inscription on the 
reverse of the map describing English North Atlantic voyages.   

Dee was, however, clearly concerned to show in addition the correct relationship between 
North America and Europe to the east and Japan to the west. He therefore required a projection 
that did not distort longitudinal distances in the way that all the true perspective projections do, 
as shown for the orthographic and stereographic projections in Fig. 4.  The only other projection 
of Fig 3 that comes close to satisfying these two advantages is Stabius/Werner 3. According to 
Keuning (1955, p.12), Stabius/Werner 3 was used by Fine for a world map in 1536, by Giovanni 
Paolo in 1556 and by Hadji Ahmed in 1560.  Fig. 4 shows that this projection differs only 
slightly from Dee’s projection except for the regions towards ±90° from the central meridian.  It 
may be, however, that Dee was unaware of Stabius/Werner 3, although this seems unlikely 
because of his close connections with well-known cartographers.   

Two facts may have influenced his choice.  The first is that the basis of his projection is the 
octant projection suggested by Fine, described above but taken up by only two cartographers.  
Taylor (1930, p.86) has described Fine as ‘the fourth of Dee’s great teachers’. Dee was his pupil 
in Paris during the years 1550 and 1551, and it was during the latter year that Fine published his 
octant projection; it is therefore possible that Dee had discussed it with him.  Another fact that 
Dee may have taken into account is the geometrical nicety that the Stabius/Werner projection 
does not treat the bounding great-circle arcs of the central octant in a precisely equal manner, 
whereas Fine’s and Dee’s projections do.  
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Figures  

 

Fig.1. John Dee’s map of the north-western semi-hemisphere, dated 1580. Cotton Augustus I.i.1;  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Reconstruction of the projection used by John Dee for the map shown in Figure 1.  The 
reconstruction was made using the equation [ ]6//)(cos πθππ +−= fRr  for the meridians, 
but at the scale shown the use of circles as described in the text would be barely 
distinguishable. 
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Fig.3. Schematic representation of the 
relationship between Dee’s projection and 
earlier projections 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Comparison of Dee’s projection with other projections for which the points at 90°N and at 
0°N45°E and 0°N45°W of a central meridian lie at the vertices of an equilateral triangle.  
Only the equator, the parallel at 35°16'N, the central meridian and the meridians at ±45° 
and ±90° from the central meridian are shown.  The Dee projection is shown in black, the 
orthographic in red, the stereographic in blue and the Stabius/Werner 3 in green.  For the 
latter, all parallels coincide with those of the Dee projection 
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Fig.5. Furuti’s reconstruction of the Da Vinci map in octants.  The parallels are circles through 
points correctly placed on the central and extreme meridians of each octant and the 
meridians are equally spaced along the parallels.  

 

 

Fig.6.  Deviations from fits.  The left-hand figure relates to the comparison of Dee’s graticule 
with the graticule calculated for ideal meridians and the right-hand figure shows the 
deviations in the same way for the comparison with the graticule calculated for circular 
meridians.  In each case a best fit was made only to the points of the Reuleaux triangle and 
the central meridian.  The tails of the arrows indicating the displacements represent the 
positions in Dee’s map and the displacements required to bring Dee’s graticule into 
coincidence with the calculated graticules are indicated by the lengths of the arrows, which 
are exaggerated by a factor of 5 compared with the scales of the graticules.  
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Notes 
1 As Macmillan (2001) points out, Dee had the works of most of the well-known cartographers of the day, as well as 

of ancient cartographers such as Ptolemy, in his personal library, which is catalogued in R.J. Roberts and A. G. 
Watson’s John Dee’s Library Catalogue (London, 1990). 

2 Cormack also suggests that this projection is linked to Dee’s ‘Paradoxal Compass’ and R. Baldwin discusses this 
question further in ‘John Dee’s interest…’. in John Dee: Interdisciplinary studies in English Renaissance 
Thought Ed Stephen Clucas (Springer, Dordrecht c. 2006) p.100.  See also Appendix A to A Regiment for the 
Sea, by William Bourne, Ed E.G.R.Taylor, (Hakluyt Society, 2nd Ser. CXXI , CUP, 1963), pp 415-7 

3 The true central parallel according to Ptolemy’s intended latitude range is actually about half a degree S of the 
parallel of Syene. Also, the projection does not fulfil Ptolemy’s intention that the chord of the equatorial arc be 
tangential to the arc for the parallel of Syene.This is because the 90° meridional arc is taken to be at a distance 
equivalent to half the originally assumed equatorial chord length along the equatorial arc from the central 
meridian. This does not put the meridian at the end of the originally assumed equatorial chord.  A more 
consistent approach would be to make the total length of the equatorial arc equal to 180° at the same scale as 
that chosen for the central meridian.  The equatorial chord length then becomes equivalent to 171°17' and the 
radius of the equatorial arc becomes equivalent to 165°48' rather than Ptolemy’s 181°48'.  

4 I am grateful to Carlos Furuti for permission to use this figure, which appears on his web site 
http://www.progonos.com/furuti/MapProj/Normal/ProjPM/projPM.html, last accessed 23 March 2011 

5 The map measures 68x105 cm, is on parchment and is stored tightly rolled.  
6  It is assumed that the shifts or errors r in position conform to a normal distribution [ ])2/(exp)( 22 σrArP −=  with 

standard deviation σ.  A is a constant and P(r) is the probability per unit area of finding a displacement  r from 
the correct position. 

  


